Calcium modulates the rapid kinetics of the odorant-induced cyclic AMP signal in rat olfactory cilia.
نویسندگان
چکیده
Although the cAMP and phosphoinositide (PI) second messenger systems are involved in olfactory signal transduction, aspects of their roles remain unclear. We have further examined the rapid kinetics of cAMP fluctuations in response to odorants in rat olfactory cilia isolated by calcium shock. Odorants cause a rapid and transient subsecond elevation of cAMP levels, as well as a more sustained signal lasting 5-10 sec. Basal cAMP levels demonstrate a biphasic calcium dependence; calcium enhanced both adenylyl cyclase (AC) and phosphodiesterase (PDE) activities. The odorant-induced cAMP response also demonstrated a biphasic dependence on calcium, with peak activity at 10 microM free calcium. All odorants tested were found to stimulate cAMP accumulation, and the dose-response curves were multiphasic, with less stimulation seen at higher concentrations. Dose-response curves performed for isovaleric acid at two free calcium concentrations demonstrated that calcium can influence cellular responsiveness to odorants and may be involved with signal potentiation as well as desensitization.
منابع مشابه
Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia.
Both the cyclic adenosine 3',5'-monophosphate and the phosphoinositide second messenger systems are involved in olfactory signal transduction. The inositol 1,4,5-trisphosphate receptor is one of the principal intracellular calcium channels responsible for mobilizing stored calcium. The precise location of the 1,4,5-trisphosphate receptor (endoplasmic reticulum vs surface) and its role in the ev...
متن کاملCalcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons.
The second messengers cAMP and inositol-1,4,5-triphosphate have been implicated in olfaction in various species. The odorant-induced cGMP response was investigated using cilia preparations and olfactory primary cultures. Odorants cause a delayed and sustained elevation of cGMP. A component of this cGMP response is attributable to the activation of one of two kinetically distinct cilial receptor...
متن کاملOlfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia
In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide-gated channels in the ciliary membrane enabling Ca(2+) influx. The ensuing elevation of the intraciliary Ca(2+) concentration opens Ca(2+)-activated Cl(-) channels, which mediate an excitatory Cl(-) efflux from the cilia. I...
متن کاملMechanism of olfactory masking in the sensory cilia
Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide-gated (CNG) and Ca2+-activated Cl- (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis o...
متن کاملSingle-channel and immunochemical evidence demonstrate the presence of Ca- dependent K Channels in Chemosensory Cilia, supporting a role in Odor Transduction
Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting on firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic non-selective cyclic nucleotide-gated (CNG) channels and Ca-dependent Cl (ClCa) channels. This process takes place in the olfactory cilia, where all protein comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1995